

IE
E

E
 S

A

W
H

IT
E

 P
A

P
E

R

IEEE P3164: SECURITY ANNOTATION FOR
ELECTRONIC DESIGN INTEGRATION

ASSET IDENTIFICATION
FOR ELECTRONIC DESIGN IP

Authored by

IEEE P3164 Security Annotation for Electronic Design Integration (SA-EDI)
Working Group

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved. 2 IEEE SA

TRADEMARKS AND DISCLAIMERS

IEEE believes the information in this publication is accurate as of its publication date; such information is subject to change

without notice. IEEE is not responsible for any inadvertent errors.

The ideas and proposals in this specification are the respective author’s views and do not represent the views of the affiliated

organization.

ACKNOWLEDGMENTS

Special thanks are given to the following authors of this paper:

Brent Sherman, Chair, Intel
Kamran Haqqani, Vice Chair, Accenture

Adam Sherer, Secretary, Cadence

Sohrab Aftabjahani, Intel
Jessy Ayala, UC Irvine
Debojyoti Bhattacharya, Arm
Mike Borza, Synopsys
Akim Layachi Daineche, Arm
Trenton Grale, Accenture
Miltos Grammatikakis, Hellenic Mediterranean University
John Hallman, Siemens
Kathy Hayashi, Qualcomm
Pavani Jella, Silicon Assurance
Wayne Kohler, Perforce Software
Amit Kumar, Microsoft

Yann Le Floch, Self
Wenzhen Li, Self
Jean-Philippe Martin, Intel
Mehdi Mohtashemi, Intel
Jean-François Mousinho, Synopsys
Prasad Nandipati, Qualcomm
Anders Nordstrom, Cycuity Inc.
James Pangburn, Cadence Design Systems
Rafael Santos, Arm
Benjamin Tan, University of Calgary
Vivek Vedula, Arm

The Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2024 by The Institute of Electrical and Electronics Engineers, Inc.

All rights reserved. 5 April 2024. Printed in the United States of America.

PDF: STDVA26891 979-8-8557-0661-1

IEEE is a registered trademark in the U. S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics Engineers,
Incorporated. All other trademarks are the property of the respective trademark owners.

IEEE prohibits discrimination, harassment, and bullying. For more information, visit
http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.

No part of this publication may be reproduced in any form, in an electronic retrieval system, or otherwise, without the prior written
permission of the publisher.

Find IEEE standards and standards-related product listings at: http://standards.ieee.org.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.
http://standards.ieee.org/

Copyright © 2024 IEEE. All rights reserved. 3 IEEE SA

NOTICE AND DISCLAIMER OF LIABILITY CONCERNING THE USE OF
IEEE SA DOCUMENTS

This IEEE Standards Association (“IEEE SA”) publication (“Work”) is not a consensus standard document. Specifically, this

document is NOT AN IEEE STANDARD. Information contained in this Work has been created by, or obtained from, sources

believed to be reliable, and reviewed by members of the activity that produced this Work. IEEE and the IEEE P3164 expressly

disclaim all warranties (express, implied, and statutory) related to this Work, including, but not limited to, the warranties of:

merchantability; fitness for a particular purpose; non-infringement; quality, accuracy, effectiveness, currency, or

completeness of the Work or content within the Work. In addition, IEEE and the IEEE P3164 disclaim any and all conditions

relating to: results; and workmanlike effort. This document is supplied “AS IS” and “WITH ALL FAULTS.”

Although the IEEE P3164 members who have created this Work believe that the information and guidance given in this Work

serve as an enhancement to users, all persons must rely upon their own skill and judgment when making use of it. IN NO

EVENT SHALL IEEE SA OR IEEE P3164 MEMBERS BE LIABLE FOR ANY ERRORS OR OMISSIONS OR DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS WORK, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Further, information contained in this Work may be protected by intellectual property rights held by third parties or

organizations, and the use of this information may require the user to negotiate with any such rights holders in order to

legally acquire the rights to do so, and such rights holders may refuse to grant such rights. Attention is also called to the

possibility that implementation of any or all of this Work may require use of subject matter covered by patent rights. By

publication of this Work, no position is taken by the IEEE with respect to the existence or validity of any patent rights in

connection therewith. The IEEE is not responsible for identifying patent rights for which a license may be required, or for

conducting inquiries into the legal validity or scope of patent claims. Users are expressly advised that determination of the

validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. No commitment

to grant licenses under patent rights on a reasonable or non-discriminatory basis has been sought or received from any rights

holder.

This Work is published with the understanding that IEEE and the IEEE P3164 members are supplying information through this

Work, not attempting to render engineering or other professional services. If such services are required, the assistance of an

appropriate professional should be sought. IEEE is not responsible for the statements and opinions advanced in this Work.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

ABSTRACT ... 5

1. INTRODUCTION .. 5

2. GENERAL ... 7

3. ASSET IDENTIFICATION ... 7

3.1. CONCEPTUAL AND STRUCTURAL ANALYSIS .. 8

3.1.1. CONCEPTUAL ANALYSIS ... 9

3.1.2. STRUCTURAL ANALYSIS ... 10

3.2. EXAMPLES .. 10

3.2.1. SIMPLE GPIO PAD .. 10

3.2.2. GAUSSIAN NOISE GENERATOR .. 12

3.2.3. AES ENGINE ... 14

3.2.4. SRAM CONTROLLER ... 16

4. POINTS OF INFLUENCE AND OBSERVATION ... 19

4.1. GENERIC CPU CORE ... 19

4.1.1. GENERAL .. 19

4.1.2. POINTS OF INFLUENCE AND OBSERVATION .. 21

5. SUMMARY .. 23

6. REFERENCES .. 24

APPENDIX A ABBREVIATIONS, ACRONYMS, AND DEFINITIONS .. 25

T
A

B
LE

 O
F

C
O

N
T

E
N

T
S

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

5 IEEE SA

ASSET IDENTIFICATION
FOR ELECTRONIC DESIGN IP

ABSTRACT
The Accellera Security Annotation for Electronic Design Integration (SA-EDI) standard [1]1 provides a

framework for producing security assurance collateral for an IP. The root of the standard and its

workflow is the identification of assets for a given IP. Once the assets are identified, the corresponding

threats and attack surfaces can be determined to help an Integrator address risks in their integrated

circuits (ICs). Therefore, if an asset was mistakenly identified, either a false positive or a false negative,

the rest of the collateral would become invalid. Unfortunately, the standard provides little guidance on

identifying assets and avoiding false positives/negatives. This paper proposes two methodologies for

asset identification within an IP using conceptual and structural analysis (CSA) and points of influence

and observation (PIO).

1. INTRODUCTION
The Security Annotation for Electronic Design Integration (SA-EDI) standard builds on the identification of assets

within the IP. The Element and Attack Point Security Objective (APSO) objects are built using information from

the Asset Definition objects. If the information in the Asset Definition objects is not accurate, then the collateral

produced from it becomes inaccurate, thus leading to potential exploits in the integrator’s integrated circuit (IC).

Therefore, assets must be accurately identified and classified accordingly. Unfortunately, SA-EDI does not

provide enough guidance in this domain to reduce false positives and false negatives. In addition, contextual IC

information such as security requirements, use cases, and so on are not known to the IP developer, making the

creation of SA-EDI collateral more difficult. This contextual information is only known well after the IP has been

developed and delivered to the integrator.

1 Numbers in brackets correspond to sources listed in Section 6.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

6 IEEE SA

This document proposes a new methodology and classification guidance to help identify assets in an IP. It walks

through the methodology using several example IPs that identify and associate high‐level assets to security

objectives, resulting in the definition of structural assets in the Register‐Transfer Level (RTL). These IPs are listed

as follows:

 Simple GPIO Pad: Single GPIO with Direction Select.

 Gaussian Noise Generator (GNG) [2]: A GNG generates random noise that has a standard normal

distribution and constant power spectral density. The core uses a 64‐bit combined Tausworthe

generator (LFSR and XOR) and further processes to transform random noise distribution to white

Gaussian noise (GN) [with blocks split, mask, leading zero detector (LZD), swizzle, and address]. A

polynomial approximation with specific coefficients is used. The generator also relies on an initial seed.

 Advanced Encryption Standard (AES) Engine: A high‐level AES engine with separated data in/out paths.

Configuration registers set the mode, encrypt/decrypt operation, key size, and start. Read‐only status

registers report errors, while the data out signal provides encrypted/decrypted output when it is

available.

 SRAM Controller [5]: A simple static random‐access memory (SRAM) controller that supports a sleep

mode and memory built‐in self‐test (MBIST).

 Generic CPU Core: A basic core pipeline and execution unit with instruction and data caches.

Section 2 details the SA‐EDI standard workflow at a higher level, examining how this methodology can be used

to create security assurance collateral, mainly focusing on the Asset Definition objects. Section 3 details a new

methodology called conceptual and structural analysis (CSA) to identify IP assets to create the Asset Definition

objects. It also demonstrates the approach by applying it to several IP examples.

NOTE—Only the GNG and SRAM examples reference the actual code since the RTL is available in their respective repository.

Section 4 introduces another method specifically for complex IPs or IPs with multiple shared resources. This

method is called points of influence and observation (PIO) and can be used in addition to CSA or as an alternative.

Section 5 summarizes both approaches and use cases.

Lastly, this standalone document is intended to be used as supplemental guidance to v1.0 of the Accellera SA‐

EDI standard. Future versions of the standard may or may not impact the content of this document.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

7 IEEE SA

2. GENERAL
The SA-EDI standard focuses on creating security assurance collateral for proper integration of an IP. The

standard defines four objects, as a progression, which are included in the IP bundle the IP provider creates. These

objects and their associations are shown in Figure 5 of the SA-EDI standard [1]. At the root of the object creations

are the Database and Asset Definition objects. These objects are the starting points for creating the collateral.

The Database object points to a security weakness knowledge base (e.g., MITRE CWE [6]), as defined in SA-

EDI, which contains a database of known weaknesses. This object is optional, however, highly recommended,

especially when using an industry-available database, such as CWE. The Asset Definition object points to assets

within the IP. These assets may be a module, register, buffer, array, or any material defined by the RTL. Both

objects, along with the RTL, are used to produce the Element objects as shown in Figure 3 of SA-EDI [1]. The

Element object is used to associate IP top-level ports (i.e., inputs and outputs) to an asset. These ports are the

attack surface for a threat to a security objective an asset may have. For example, a confidentiality security

objective may be violated by a port if it can be used to observe an asset at the integration level of the IP. This

information (i.e., assets, ports, security objectives, threats, etc.) is captured in Attack Surface Security

Objective (APSO) objects, which is shown in Figure 3 of SA-EDI [1]. The APSO objects are the end results that

are used by the integrator to help generate the threat model of the IC, as shown in Figure 4 of SA-EDI [1].

The Asset Definition objects form the foundation for creating the APSO objects. If they are not properly

constructed, for example, if they are questionable in validity, then the result will be invalid APSO objects.

Determining the validity of an Asset Definition object is subjective, meaning that what one developer deems as

an asset may or may not be what another developer considers as an asset. This becomes the root of the problem;

how can one objectively identify, with justification, what an IP asset is? This paper proposes a dual-approach to

help increase the confidence that an asset has been properly identified, thus resulting in valid APSO objects for

the integrator to consume. Both methodologies require the use of an architectural block diagram. As a

disclaimer, this document does not eliminate subjectivity. It merely provides two structured approaches to help

the IP provider apply a security mindset.

3. ASSET IDENTIFICATION
Identifying assets and their properties is a way to help discover risks associated with IP integration. Many use

this approach as the first step in threat modeling, especially when dealing with a large interface or attack surface.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

8 IEEE SA

As with most approaches, the first step is often the critical piece since the rest of the process builds from it.

Therefore, any inaccuracies, such as false positives or negatives, may produce erroneous results. In security, this

can lead to exploitation. As an example, if the threat modeling process missed an asset (i.e., a false negative),

then a threat could remain unidentified resulting in a missing mitigation. To help address this concern, the

following two approaches are proposed: CSA and PIO.

The CSA approach focuses on security objectives to identify conceptual assets. These conceptual assets are used

to identify their RTL representation, such as registers, modules, gates, and so on, which are the structural assets.

These structural assets create the Asset Definition objects in the SA-EDI standard. The PIO method starts by

looking at the interface of the IP to identify conceptual assets. Once identified, the focus becomes points of

influence and observation on these assets. These are points through which an asset may be compromised. If a

security objective can be compromised, then the RTL representation of these points would be a structural asset

and thus require an Asset Definition object.

3.1. CONCEPTUAL AND STRUCTURAL ANALYSIS
The concept behind CSA is to use conceptual assets to identify structural assets that will be used to define the

Asset Definition objects of the SA-EDI standard. A conceptual asset is a high-level asset associated with the use-

case flows of the IP, such as data and system state, which involves a security objective such as confidentiality,

integrity, or availability (CIA). An example of a conceptual asset is data that a user wants to identify as a secret.

This data would, at least, require confidentiality as a security objective, thus making it an asset.

A structural asset is RTL material that physically supports a conceptual asset. Examples of structural assets may

be registers, modules, flops/latches, gates, and so on. Using the plaintext data as the conceptual asset, a

structural asset would be RTL material that supports its data flow. An example may be a buffer that temporarily

stores the data as it is entered into the IP. Another example may be registers that contain details about this data,

which should also be kept secret. These examples may be considered structural assets, thus requiring SA-EDI

Asset Definition objects.

It is worth noting that the proposed methodology does not claim to eliminate ambiguity or subjectivity when

determining what is an asset. Instead, the claim is that CSA is one of many approaches that an IP developer can

use to help generate SA-EDI collateral and that the approach can be used independently or in addition to other

methodologies. The recommendation is to use whatever approaches yield the best results for a particular IP.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

9 IEEE SA

3.1.1. CONCEPTUAL ANALYSIS

It is uncommon for IC security objectives to be known to an IP developer, simply because an IP is typically

developed well before an integrator establishes requirements and use cases. To overcome this obstacle, IP

developers must make certain assumptions to assess security risks in the IP. The conceptual approach is designed

to assist in this process by focusing on asset identification and security objective associations. The approach

assumes that the IP developer has zero contextual knowledge about the IC.

To start the methodology, the IP developer answers the following questions for each intended use case of the

IP. An architectural diagram of the IP is helpful during this assessment.

1. Assume that the IP is to be integrated into an IC where confidentiality protections are required. Are

there any elements in the IP that can leak or expose material that an integrator may deem confidential?

 For example, is there any information, either as input or internally generated, that may be

considered secret?

2. Assume that the IP is to be integrated into an IC where integrity protections are required. Are there

any elements in the IP that can modify material an integrator may deem as sensitive?

 For example, are there any state or configuration settings that need to be immutable during

certain operations or modes?

3. Are there any elements in the IP that, if unavailable, would prohibit the operational behavior of the IP

or IC?

 For example, are there any elements that could gate an output port or the use of an input port?

The focus should be on elements that may be impacted by a denial-of-service attack at the

integration level.

4. Are there elements that could be impacted by behaviors at the integration level to undermine the

functionality of the IP under normal operation?

 For example, are there any privileged modes, overrides, bypass, test packet injection, and so on

that can make the IP produce incorrect output? The focus should be on elements that may be

compromised.

If the answer is “Yes” to any of the questions above, then the element in question may be considered a

conceptual asset in the IP. The next step would be to move to the structural approach of the methodology. If

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

10 IEEE SA

the answer is “No” to all the questions above, then it is probably safe to assume that the element is not an asset

and does not require any associated SA-EDI objects.

3.1.2. STRUCTURAL ANALYSIS

Once the conceptual assets have been identified, the next step is to identify structurally where these assets are

in the design. The intent is to look through the RTL and identify material that supports the conceptual assets.

For example, during the conceptual phase, it was discovered that one of the use cases required confidentiality

on “Data” being generated within the IP. The structural assets would be the RTL code that produces “Data” and

stores and transports its value (e.g., reg and wire). These code parts are the structural assets and should have

an associated SA-EDI Asset Definition object.

3.2. EXAMPLES
This section applies the CSA methodology to several IP examples by analyzing the architectural diagrams. Since

the RTL is not provided for some of the IPs, the structural portion will be discussed without reference to the

code. However, this should not take away from the learnings highlighted by the examples.

3.2.1. SIMPLE GPIO PAD

The architectural block diagram of the simple GPIO pad is shown in Figure 1. Two data ports and a Direction

Select are the only interface ports. This IP was selected because of the minimal use cases and integration options

that are supported. The intent is to start with a simple, noncomplex IP, so the methodology becomes the focus

and not the IP itself. In later examples, the architecture becomes more complex.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

11 IEEE SA

FIGURE 1 Simple GPIO pad block diagram

Data

Direction Select

Data0

1

0

1

Start by applying the conceptual phase of the analysis by answering the questions stated in Section 3.1.1.

1. Confidentiality: Are there any elements in the IP that can leak or expose material that may need

confidentiality?

 No. The gates inside the IP do not leak any information.

2. Integrity: Are there any elements in the IP that can modify material an integrator may deem as

sensitive?

 Yes. If the “Direction Select” was toggled during a runtime sample, the “Data” could also toggle in

value, potentially producing an error. The mux gates can be considered conceptual assets.

3. Availability: Are there any elements in the IP that, if unavailable, can prohibit operational behavior?

 Yes. The “Direction Select” can reverse the data flow on “Data” ports, which can be a denial of

service. The elements impacted by this attack are the mux gates and should be considered

conceptual assets.

4. Undermined Expected Behavior: Are there elements that could be impacted by behaviors at the

integration level to undermine the functionality of the IP under normal operation?

 No. The IP has no privilege or bypassing mechanisms that will alter its normal behavior.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

12 IEEE SA

Since the assessment triggered questions #2 and #3, there should be at least one conceptual asset: the mux

gates. The structural assets that create the Asset Definition objects would be the RTL of these gates. In addition,

the “Direction Select” port can be used as the attack point to violate both objectives; however, attack points

associated with SA-EDI objects are not the focus of this paper.

3.2.2. GAUSSIAN NOISE GENERATOR

The GNG is an IP that is available in OpenCores [3]. It can be used in deep-learning models to add randomness

to the input data or weights to make the neural network more robust to data variations. It is frequently used in

image detection and speech recognition.

Figure 2 is a modified GNG block diagram from the one in OpenCores. Inputs “INIT_Z” are ports instead of

parameters and ports “Addr_OvR” and “Split_Inp” were added to challenge the methodology and add to the

analysis. Another modification is the opaque “Swizzle” subsystem that simplifies the block diagram without

impacting the assessment.

FIGURE 2 GNG block diagram

LFSR

Data_Out

D

XORLFSR

D

LFSR

D

INIT_Z1

INIT_Z2

INIT_Z3 Sp
lit

LZD ADDR

Coeff
ROM

Swizzle
Mask

Mux

Addr_OvR

Split_Inp

The IP has three data input ports labeled “INIT_Z” that are initialization vectors to prime the linear feedback shift

registers (LFSRs). The “Split_Inp” is an output test port that is used to observe the randomness going into the

split logic. The “Addr_OvR” port is used to override the address created by the LZD logic for testing the coefficient

ROM. The “Data_Out” is the GN produced by the IP.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

13 IEEE SA

Start by applying the conceptual phase of the analysis by answering the questions stated in Section 3.1.1.

1. Confidentiality: Are there any elements in the IP that can leak or expose material that may need

confidentiality?

 Yes. The output value of the XOR block can be deemed as a seed and, if observed, may be used to

predict the GN. This assumes that the IC considers GN as a secret. The conceptual asset would be

the XOR and LFSR blocks.

2. Integrity: Are there any elements in the IP that can modify material an integrator may deem as

sensitive?

 Yes. The address into the Coeff ROM should not be modified once the “INIT_Z” inputs are set.

Modifying the address to use a different coefficient than the one intended may reduce the

randomness of the GN. Therefore, the conceptual assets would be the ADDR block and Coeff

ROM.

3. Availability: Are there any elements in the IP that can become unavailable, prohibiting operational

behavior?

 No. There is no means at the integration level to disable or impede “Data_Out.”

4. Undermined Expected Behavior: Are there elements that could be impacted by behaviors at the

integration level to undermine the functionality of the IP under normal operation?

 Yes. Input “Addr_OvR“ can force the IP to select an unintended coefficient, which may produce

an invalid GN on “Data_Out,” pending the use case. Therefore, Coeff ROM is a conceptual asset.

All questions identified a conceptual asset except for #3. The assets identified are XOR, LFSR, ADDR, Coeff ROM,

and the RTL that constructs these blocks will be the structural assets and, therefore, require an associated Asset

Definition object. For example, the output value of Coeff ROM is located in the file gng_coef.v in line 51 shown

in Figure 3.

FIGURE 3 Coeff ROM output

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

14 IEEE SA

Therefore, the Asset Definition object for this asset may be defined as

{
 "Name" : "gng.gng_interp.gng_coef.d",
 "Description" : "Output from Coeff ROM",
 "Family" : ["Accelerator"],
 "Type" : ["Sensitive"],
 "Database_ID" : ["CWE VIEW: Hardware Design"]
}

3.2.3. AES ENGINE

The AES is a symmetric block cipher that is approved by NIST [4]. FIGURE 4 shows an architectural block diagram

of an AES IP. The signal descriptions are detailed in Table 1.

FIGURE 4 AES engine

Config Regs

Status Regs

Key Reg

IV Reg

Enc/Dec
Engine

Input Buffer

Output Buffer

Data_In

IV

Key

Status

Configuration

Data_OutDebug

Debug Values

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

15 IEEE SA

TABLE 1 AES signal descriptions

Name Type Description

Configuration Read/Write Access to the configuration registers for the Enc/Dec Engine such as key size,
AES mode, operation, start/stop, and so on

Status Read Access to the status registers for error codes, state, completion, and so on

Debug Read/Write Signals used to debug the Enc/Dec Engine, including complete observability
and control. When entering the debug mode, the IV and key values are
replaced with debug values hardcoded in the RTL

Key Write Key value for encrypt/decrypt operation

IV Write Initialization vector for AES cryptography

Data_In Write Input data to be encrypted/decrypted

Data_Out Read Output data from the encrypt/decrypt engine

Start by applying the conceptual phase of the analysis by answering the questions stated in Section 3.1.1.

1. Confidentiality: Are there any elements in the IP that can leak or expose material that may need

confidentiality?

 Yes. Since this is a crypto IP, the plaintext data and key values are secrets. Therefore, any block in

Figure 3 that supports these secrets will be a conceptual asset. These assets are Key Reg,

Enc/Dec Engine, Input Buffer, and Output Buffer. In addition, the Status Regs may leak

confidential information since it provides information about the Enc/Dec Engine. Therefore, this

block may also be considered a conceptual asset.

2. Integrity: Are there any elements in the IP that can modify material an integrator may deem as

sensitive?

 Yes. When the Enc/Dec Engine is operating, the key, IV, input data, and its configuration should

not be modified. Therefore, Key Reg, IV Reg, Input Buffer, and Config Regs are conceptual assets

that require integrity.

3. Availability: Are there any elements in the IP that can become unavailable, prohibiting operational

behavior?

 Yes. The debug interface allows complete control of the Enc/Dec Engine. Therefore, “Data_Out”

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

16 IEEE SA

can be blocked by this interface, thus making the Enc/Dec Engine a conceptual asset.

4. Undermined Expected Behavior: Are there elements that could be impacted by behaviors at the

integration level to undermine the functionality of the IP under normal operation?

 Yes. The debug interface allows the IP to encrypt/decrypt using the test key and IV values, which

may result in a loss of security strength, making the Enc/Dec Engine a conceptual asset.

As identified in the questions above, every block in the IP, except the Debug Values block, can be considered a

conceptual asset. Therefore, the RTL in these blocks would be the structural assets and require Asset Definition

objects, which may be too numerous to comprehend. This is common for IPs that make security claims such as

cryptography. One could assert that the entire IP is a structural asset, whereas the top RTL module would be the

Asset Definition object. This would reduce the Asset Definition objects to just one, which simplifies the analysis.

Another approach, which is a modification to the CSA methodology and is detailed in Section 4, may be used to

analyze the IP from a vulnerability perspective to identify assets. This approach could help identify assets that

are false positives. Both approaches are acceptable and should yield the same APSO [1] objects.

3.2.4. SRAM CONTROLLER

The SRAM controller is an IP that is available in OpenCores [3]. The modified architectural block diagram of an

SRAM controller is shown in FIGURE 5. Modifications were made to simplify the architecture to highlight the CSA

methodology. All inputs are both read/write and their descriptions are listed in Table 2.

FIGURE 5 SRAM controller

Address
Register

Control
Register

Control Logic

Data-In
Register

Memory
Array

Output
Register

Mode

CE

Address

WE, BW

OE

ZZ

DQ

MBIST

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

17 IEEE SA

TABLE 2 SRAM controller signal descriptions

Name Description

Mode Used to select MBIST. This operation overwrites contents in the Memory
Array and prevents the address signal from being utilized

Address Address in the memory array to read from or write to

CE Chip enable

WE Write enable

BW Synchronous byte write

OE Output enable

ZZ Power sleep mode

DQ Data (input/output)

Start by applying the conceptual phase of the analysis by answering the questions stated in Section 3.1.1.

1. Confidentiality: Are there any elements in the IP that can leak or expose material that may need

confidentiality?

 Yes. If secret data is stored in the SRAM, then the Memory Array becomes an asset. In addition,

the Data-In Register and Output Register may also contain secret information that is readable at

the integration level. The address register might contain information that may be considered a

secret, pending on the use case. Therefore, the conceptual assets are the Memory Array, Data-In

Register, Output Register, and Address Register.

2. Integrity: Are there any elements in the IP that can modify material an integrator may deem as

sensitive?

 Yes. The integrator may want a certain address range to be read-only. Therefore, this range will

need integrity protections, thus making the Memory Array a conceptual asset.

3. Availability: Are there any elements in the IP that can become unavailable, prohibiting operational

behavior?

 Yes. If MBIST is enabled, the address signal is no longer input into the Memory Array, thus

preventing operational behavior. If the “ZZ” signal is asserted, the IP goes into sleep mode and

prevents it from operating. Therefore, the Memory Array is a conceptual asset.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

18 IEEE SA

4. Undermined Expected Behavior: Are there elements that could be impacted by behaviors at the

integration level to undermine the functionality of the IP under normal operation?

 Yes. The MBIST operation makes the IP unusable while it is executing test patterns. Therefore,

the Memory Array is a conceptual asset.

The SRAM controller triggered all four questions, resulting in the Memory Array, Data-In Register, Output

Register, and Address Register as conceptual assets. The RTL that supports these blocks is considered a structural

asset and should be associated with an Asset Definition object. For example, the address value in the Address

Register is in file zbt_top.vhd in line 143 as shown in Figure 6.

FIGURE 6 SRAM address

The signals ZBT_addr and ZBT_addr2 represent the SRAM address and are considered structural assets. As for

the Asset Definition object, the assets could be combined into a single object or left separated. In this case, the

decision was to leave them separated and create two objects, so it is explicit.

{
 "Name" : "zbt_top.ZBT_addr",
 "Description" : "SRAM address that requires confidentiality protections",
 "Family" : ["Memories"],
 "Type" : ["Secret, Sensitive"],
 "Database_ID" : ["CWE VIEW: Hardware Design"]
}

{
 "Name" : "zbt_top.ZBT_addr2",
 "Description" : "SRAM address that requires confidentiality protections",
 "Family" : ["Memories"],
 "Type" : ["Secret, Sensitive"],
 "Database_ID" : ["CWE VIEW: Hardware Design"]
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

19 IEEE SA

4. POINTS OF INFLUENCE AND
OBSERVATION

The CSA methodology may get difficult to scale for complex IPs, such as a CPU core or an IP subsystem. An

analysis may end up identifying all the internal blocks of an IP as structural assets which could result in false

positives and/or too many Asset Definition objects for human comprehension. An alternative approach would

be to level up the architecture block diagram to just focus on the interface of the IP. This should help reduce the

complexity of the analysis. Next is to identify the information that goes into the IP and what information is

produced as a result. This information may be the conceptual assets. Once the conceptual assets are identified,

revert to the architectural block diagram and focus on the points of influence and observation of the IP, that is,

blocks where the conceptual assets can be observed or influenced. Analyze the use cases at this observation

point to identify structural assets in the RTL by answering the following questions, which align with the questions

highlighted in Section 3.1.1:

1. Does the observation point expose any confidentiality of the conceptual asset?

2. Does the influence point allow any modification of the conceptual asset?

3. Can the observation and/or influence point prevent the conceptual asset from being available for

functional operation?

4. Does the observation and/or influence point have any special behaviors that can prevent the

conceptual asset from being available for normal operation?

The structural assets identified will be associated with an Asset Definition object in the SA-EDI standard. The

following section will highlight this approach using a generic CPU core as an example.

4.1. GENERIC CPU CORE

4.1.1. GENERAL

A CPU core is a complex IP consisting of a pipeline, shared structures, branch prediction (BP) capabilities, and so

on. Due to this complexity, applying the CSA methodology to such an architectural diagram would not be as

straightforward as shown in the previous examples. Therefore, the PIO methodology may be better applied to

determine the structural assets.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

20 IEEE SA

The first step of the PIO methodology is to simplify the CPU core architecture to just the input and output signals,

which is shown in Figure 7.

FIGURE 7 Simplified generic CPU core

A typical CPU core will execute instructions that act upon input data to produce some output data. By focusing

on this use case, Instructions and Data can be identified as the conceptual assets. Next, use these assets to

identify structural assets in a more detailed architectural diagram.

Figure 8 presents a more detailed block diagram showing the most important blocks within a generic CPU core.

Note that the Data input and Data output from Figure 7 are shown as the same port in Figure 8.

FIGURE 8 Block diagram of a generic CPU IP

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

21 IEEE SA

Since this is a generic CPU core, many of the common structures, such as power and system management, debug,

and performance buses, have been abstracted away, so the focus is on the instructions and data as the main

conceptual assets.

Instructions are stored in the instruction cache (ICache) and fetched according to the address stored in the

program counter (PC), which thereafter increments to point to the next instruction to be fetched. The actual

memory address is obtained once an address translation is performed by the instruction translation lookaside

buffer (ITLB), which maintains information and permissions about the context of each process executed. If the

instruction fetched is a control flow instruction (e.g., conditional branch, indirect jump, call/return, etc.), the

next address to be fetched is not necessarily the next in memory. The BP stores the history of past executed

control flow instructions to allow for predicting the value of the next PC in these cases.

Once fetched, an instruction will propagate to the Decode, Register Rename, and Dispatch units to finally be

assigned to one of the execution units available (e.g., branch, ALU/shift, and SIMD/FP).

Data is stored in the data cache (DCache) and accessed through Load/Store instructions. The data translation

lookaside buffer (DTLB) performs the address translation and permissions check. If permissions are granted, then

the data is moved from the DCache into one of the architectural registers (GPR, FPR, and SPR) on a Load

instruction and in the opposite direction on a Store instruction.

When instructions are dispatched to the execution units, their data is read from one or more of the architectural

registers. The associated Execution Unit performs the appropriate transaction, and, if data is produced, it is

stored back into the register file. Once completed, if no exception was raised during execution, instructions are

sent to the Commit logic.

4.1.2. POINTS OF INFLUENCE AND OBSERVATION

Once the conceptual assets have been identified, the next step in PIO is to identify where these assets can be

observed or influenced in the architecture. Using the block diagram in Figure 6, examples of such entities may

be ICache, DCache, architecture registers, execution units, and so on. The key is to answer the questions listed

in Section 4 for each point. For example, use the DCache as an observation and influence point for the conceptual

asset data:

1. Confidentiality: Does DCache expose any confidentiality of data?—Yes. Caches are a shared resource

that have been known to leak information under certain circumstances.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

22 IEEE SA

2. Integrity: Does DCache allow any modification of data?—No. The DCache by itself cannot modify data

but it can replace when a store operation is requested. However, this is expected behavior and should

not result in a “yes” to this question.

3. Availability: Can DCache prevent data from being available for functional operation?—Yes. Thrashing

or exhausting the cache can prevent data from being available, in a timely fashion.

4. Undermined Expected Behavior: Does DCache have any special behaviors that can prevent data from

being available for normal operation?—No. There are no features in the DCache that prevent data

from being available.

Questions #1 and #3 raised the concern about confidentiality and availability. Therefore, the microarchitecture

of the DCache can be considered structural assets such as the RTL logic for replacement policy, DCache contents,

and internal state. These logic blocks would require an Asset Definition object based on the security objective of

confidentiality. Table 3 lists more potential structural assets using the PIO approach. Note that this table is not

comprehensive.

TABLE 3 Structural assets for the CPU core

Conceptual Asset: Instructions
Observation/Influence

Point
Rationale Structural Asset(s) Security Objective

at Risk

ICache Caches, if not protected, can be
used as covert/side channels to
exfiltrate data

ICache replacement
policy, ICache contents,
and ICache internal state

Confidentiality,
availability

BP (Branch Predictor) BP, if not protected, can be used
to influence the flow of control.
BP also allows speculative
execution, which opens the
possibility of exploiting transient
execution attacks

Branch prediction
history and target
addresses

Integrity

ITLB Caches, if not protected, can be
used as covert/side channels to
exfiltrate data

Memory mapping, ITLB
contents, and ITLB
replacement policy

Confidentiality,
availability

Conceptual Asset: Data
GPR, FPR General-purpose registers are

typically shared between
multiple processes

Registers Confidentiality

Functional Units
(ALU/Shift, Branch,
SIMD, etc.)

The processing time can reveal
the data processed if directly
dependent on the data itself

Source and data
registers

Confidentiality

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

23 IEEE SA

Conceptual Asset: Data (continued)
DCache Caches, if not protected, can be

used as covert/side channels to
exfiltrate data

DCache replacement
policy, DCache contents,
and DCache internal
state

Confidentiality,
availability

DTLB Caches, if not protected, can be
used as covert/side channels to
exfiltrate data

Memory mapping, DTLB
contents, and DTLB
replacement policy

Confidentiality,
availability

5. SUMMARY
This paper presents two methodologies to help IP developers identify assets in an IP: CSA and PIO. These

methodologies are not mutually exclusive, and they are not the only means to identify assets within an IP. They

are designed to simplify the application of the SA-EDI standard, and both require an architectural diagram. The

CSA approach focuses on security objectives to identify conceptual assets. Once the conceptual assets are

identified, the RTL representation of these assets, such as registers, modules, gates, and so on, are the structural

assets. These structural assets create the Asset Definition objects in the SA-EDI standard.

The PIO approach still focuses on conceptual and structural assets but identifies them differently. This method

starts by looking at the interface of the IP to identify conceptual assets. Once identified, the focus becomes

points of influence and observation on these assets. These are points through which an asset may be

compromised. If a security objective can be compromised, then the RTL representation of these points would

be a structural asset and thus require an Asset Definition object.

Both methodologies can be applied to any IP, but PIO may be better suited for complex IP such as CPU cores or

subsystems. This is because it starts with an abstraction of the architectural diagram to reduce complexity by

focusing on the IP interface. The CSA approach does the opposite: it focuses on components within the

architecture to identify how a security objective can be compromised. Both are effective and one must make a

judgement call as to which one works best for the IP in question.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2024 IEEE. All rights reserved.

24 IEEE SA

6. REFERENCES

The following sources have either been referenced within this paper or may be useful for additional reading:

[1] Accellera Systems Initiative. (2021). Security Annotation for Electronic Design Integration Standard 1.0.

[Online]. Available: https://www.accellera.org/downloads/standards/ip-security-assurance

[2] G. Liu. (2014). Gaussian Noise Generator. OpenCores. [Online]. Available:

https://opencores.org/projects/gng

[3] OpenCores©. 1999-2023. [Online]. Available: https://opencores.org/

[4] M. Dworkin et al. Advanced Encryption Standard, NIST FIPS Standard-197, Federal Inf. Process Stds. (FIPS),

Gaithersburg, MD, USA, 2001.

[5] Integrated Silicon Solution Inc. (2008). ZBT SRAM Controller. OpenCores. [Online]. Available:

https://opencores.org/projects/zbt_sram_controller

[6] MITRE. Common Weakness Enumeration. [Online]. Available: https://cwe.mitre.org/

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

https://www.accellera.org/downloads/standards/ip-security-assurance
https://opencores.org/projects/gng
https://opencores.org/
https://opencores.org/projects/zbt_sram_controller
https://cwe.mitre.org/

Copyright © 2024 IEEE. All rights reserved.

25 IEEE SA

APPENDIX A

ABBREVIATIONS, ACRONYMS, AND DEFINITIONS

Many of the terms, abbreviations, and acronyms in this paper are defined in the SA‐EDI standard and, therefore,

are not listed. Many of the acronyms in this paper are defined in line with their usage and not listed below. Those

that are introduced and not defined are listed below.

 ALU Arithmetic logic unit

 ASIMD Single instruction, multiple data

 FP Floating point

 FPR Floating‐point register

 IC Integrated circuit

 IP Intellectual property

 GPR General‐purpose register

 RTL Register‐Transfer Level

 SPR Special‐purpose register

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

RAISING THE WORLD’S
STANDARDS

3 Park Avenue, New York, NY 10016-5997 USA http://standards.ieee.org

Tel.+1732-981-0060 Fax+1732-562-1571

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 21,2025 at 10:40:00 UTC from IEEE Xplore. Restrictions apply.

http://standards.ieee.org/

	FRONT COVER: ASSET IDENTIFICATION FOR ELECTRONIC DESIGN IP
	TRADEMARKS AND DISCLAIMERS
	ACKNOWLEDGMENTS
	NOTICE AND DISCLAIMER OF LIABILITY CONCERNING THE USE OF IEEE SA DOCUMENTS
	TABLE OF CONTENTS
	ABSTRACT
	1. INTRODUCTION
	2. GENERAL
	3. ASSET IDENTIFICATION
	3.1. CONCEPTUAL AND STRUCTURAL ANALYSIS
	3.1.1. CONCEPTUAL ANALYSIS
	3.1.2. STRUCTURAL ANALYSIS

	3.2. EXAMPLES
	3.2.1. SIMPLE GPIO PAD
	3.2.2. GAUSSIAN NOISE GENERATOR
	3.2.3. AES ENGINE
	3.2.4. SRAM CONTROLLER

	4. POINTS OF INFLUENCE AND OBSERVATION
	4.1. GENERIC CPU CORE
	4.1.1. GENERAL
	4.1.2. POINTS OF INFLUENCE AND OBSERVATION

	5. SUMMARY
	6. REFERENCES
	APPENDIX A: ABBREVIATIONS, ACRONYMS, AND DEFINITIONS
	BACK COVER

